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Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (Apobec3) antiretroviral factors cause
hypermutation of proviral DNA leading to degradation or replication-incompetent HIV-1. However, HIV-1 viral
infectivity factor (Vif) suppresses Apobec3 activity through the Cullin 5-Elongin B-Elongin C E3 ubiquitin ligase
complex. We examined the effect of genetic polymorphisms in the CUL5 gene (encoding Cullin 5 protein) on AIDS
disease progression in five HIV-1 longitudinal cohorts. A total of 12 single nucleotide polymorphisms (SNPs) spanning
93 kb in the CUL5 locus were genotyped and their haplotypes inferred. A phylogenetic network analysis revealed that
CUL5 haplotypes were grouped into two clusters of evolutionarily related haplotypes. Cox survival analysis and mixed
effects models were used to assess time to AIDS outcomes and CD4þT cell trajectories, respectively. Relative to cluster I
haplotypes, the collective cluster II haplotypes were associated with more rapid CD4þ T cell loss (relative hazards [RH]¼
1.47 and p ¼ 0.009), in a dose-dependent fashion. This effect was mainly attributable to a single cluster II haplotype
(Hap10) (RH ¼ 2.49 and p ¼ 0.00001), possibly due to differential nuclear protein–binding efficiencies of a Hap10-
specifying SNP as indicated by a gel shift assay. Consistent effects were observed for CD4þ T cell counts and HIV-1 viral
load trajectories over time. The findings of both functional and genetic epidemiologic consequences of CUL5
polymorphism on CD4þ T cell and HIV-1 levels point to a role for Cullin 5 in HIV-1 pathogenesis and suggest
interference with the Vif-Cullin 5 pathway as a possible anti-HIV-1 therapeutic strategy.
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Introduction

Members of the apolipoprotein B mRNA editing enzyme,
catalytic polypeptide-like 3 (Apobec3) family of cytidine
deaminases are innate cellular anti-HIV-1 factors [1,2]. In
the absence of HIV-1 viral infectivity factor (Vif), both
Apobec3G and Apobec3F are packaged into HIV-1 virions
and during reverse transcription in the newly infected cell
deaminate dC to dU in the nascent minus-strand DNA. This
deamination results in either the degradation of the cDNA
through a cellular uracil-DNA-glycosidase degradation path-
way or pervasive G to A hypermutation in the plus-strand
proviral cDNA [3–7]. However, the antiretroviral activities of
Apobec3G and Apobec3F are suppressed by HIV-1 Vif,
effectively preventing incorporation of Apobec3G or Apo-
bec3F into virions, primarily by inducing Apobec3G
degradation by proteasomes [8–11], and perhaps by addi-
tional mechanisms [5,12,13]. HIV-1 Vif interacts with the
cellular proteins Cullin 5, Elongin B , Elongin C, and Rbx1
to form an E3 ubiquitin ligase complex that induces
polyubiquitination and proteasomal degradation [7]. When
the Cullin 5 complex is inhibited by mutating Cullin 5 or is
down-regulated by RNA interference, Vif-induced polyubi-
quitination and degradation of Apobec3G is blocked [7,14].
This suggests that the ability of HIV-1 Vif to suppress the

antiviral activity of the two Apobec3 proteins specifically
depends on Cullin 5-Elongin B-Elongin C function [7,14].
Most recently, the Vif-Cullin 5 binding domain has been
mapped to a highly conserved HCCH motif within the HIV-
1 Vif zinc-binding domain [15,16]. The region in Cullin 5
that mediates Vif interaction has been mapped to the loop
region between helices 6 and 7 (amino acids 120–138) [16].
In an independent report, the Vif interaction region was
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mapped to the first cullin repeat (amino acids 1–158) of
Cullin 5 [17].

We recently reported that a nonsynonymous single
nucleotide polymorphism (SNP) in the APOBEC3G gene
may be associated with altered AIDS progression [18]. Since
Cullin 5 is a critical host factor in the Vif-mediated
degradation pathway of anti-HIV-1 proteins Apobec3G and
Apobec3F, we investigated the effects of genetic variation in
CUL5 on the natural history of HIV-1 progression.

Results

Description of CUL5 Variants
The CUL5 gene is approximately 100 kb in length and

consists of 19 exons (Figure 1). At the start of this project,
about 40 SNPs for the CUL5 gene on human Chromosome
11q22 had been deposited in the National Center for
Biotechnology Information database SNP (NCBI dbSNP)
(http://www.ncbi.nlm.nih.gov/SNP/). No nonsynonymous nu-
cleotide replacements have been reported to date. Through
resequencing of 188 DNA samples, we did not discover any
additional SNPs in exons 15–19 in the C terminus of the
CUL5 gene or in the putative promoter region. By consider-
ing SNP location, spacing, and allele frequency, 12 SNPs were
selected for genotyping in the AIDS cohorts (Figure 1 and
Table S1). Of these 12 SNPs, one SNP (SNP5, rs7117111) is
within the coding region, one (SNP12) is in the 39 UTR, and
the remaining SNPs are in introns. SNP5 is a synonymous
transition (CAA . CAG) at the third position of codon 75
encoding glutamine (Q). Each of the 12 SNPs was in Hardy-
Weinberg equilibrium (p . 0.05) in African Americans (AA)
and European Americans (EA).

CUL5 SNPs Exhibit Strong Linkage Disequilibrium
The 12 SNPs span 93 kb of the CUL5 gene (Figure 2A and

2B). The extent of linkage disequilibrium (LD) was assessed by
calculating all pairwise D9 values among the CUL5 SNPs,
separately for AA and EA (Figure 2A and 2B). Strong LD was
observed among all SNPs (D9 range 0.92–1.0) in EA and

almost all SNPs in AA, with the majority of marker pairs
showing D9 values between 0.95 and 1.0. In both AA and EA,
as well as in a Han Chinese (HC) population, SNPs 3, 5, and 8
and SNPs 7 and 9 were in perfect LD (D9¼ 1 and r2¼ 1). Thus
each SNP carries the same information content as its proxies.
We therefore used SNP5 as a proxy for SNPs 3 and 8 and
SNP7 as a proxy for SNP9. SNP5 has a diverse allele
distribution in different population groups: the A allele
frequency is 0.61, 0.34, and 0.13 in AA, EA, and HC,
respectively. Only a single LD block formed by all 12 SNPs
was identified for both population groups as defined by
confidence intervals of pairwise D9 between all SNPs [19].
Additional data from the International HapMap Genome
Browser (http://www.hapmap.org) showed that this LD block
does not extend beyond the CUL5 gene region (unpublished
data).
There were 11 haplotypes observed in total in the three

populations: six (1, 2, 3, 7, 8, and 10) haplotypes were shared
among all racial groups, while five haplotypes were observed
only in AA (Figure 1). In EA, six major haplotypes with
frequencies between 0.07 and 0.43 represented 98.8% of all
chromosomes. In AA, 11 haplotypes with frequencies between
0.03 and 0.21 represent 95.5% of all chromosomes, eight of
which had a frequency below 10%. The haplotype distribu-
tion in HC closely resembled that of EA.

CUL5 Haplotypes Form Two Clusters Separated by Three
Cluster-Tagging SNPs
To determine the evolutionarily relatedness of the hap-

lotypes, an evolutionary tree of the CUL5 haplotypes
composed of 12 SNPs was reconstructed using the phyloge-
netic network method [20] (Figure 2C and 2D). The network
comprised two main clusters (referred to here as cluster I and
II), which differ at SNPs 3, 5, and 8 in the human. These are
separated by the chimpanzee sequence representing the
ancestral haplotype and the median vector representing
possibly extant unsampled sequences or extinct ancestral
sequences. Since the proxy SNPs 3, 5, and 8 separated and
defined clusters I and II, we defined these as cluster-tagging
(ct) SNPs (ctSNPs). Cluster I and II contain six and five
haplotypes, respectively. All haplotypes in cluster I contain
the ancestral alleles at SNP 3, 5, and 8 (G, A, and A,
respectively), and all haplotypes in cluster II contain the
derived allele at SNP 3, 5, and 8 (A, G, and G, respectively)
(Figures 1, 2C, and 2D).

Effect of CUL5 SNPs and Haplotypes on Susceptibility to
HIV-1 Infection
We compared the CUL5 SNP allele and haplotype

frequency distributions among highly exposed but uninfected
individuals to HIV-1 seronegative individuals (SN) and HIV-
1-infected seroconverter individuals (SC). No distortion of
frequency distribution between risk groups was observed for
any SNP or haplotype in AA or EA (unpublished data),
suggesting that the CUL5 genetic variation assessed herein has
no obvious effect on susceptibility to HIV-1 infection.

CUL5 Clusters Were Associated with CD4þ T Cell Depletion
in African Americans
AA and EA were analyzed separately since the allele

frequencies and haplotype structures differed between the
two groups. To minimize the haplotypes and SNPs to be
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Author Summary

Human apolipoprotein B mRNA editing enzyme, catalytic polypep-
tide-like 3 G (Apobec3G) is an innate antiviral protein that inhibits
HIV type 1 (HIV-1) replication by causing deleterious mutations in
the HIV-1 genome. Unfortunately, HIV-1 has a strategy to defeat the
antiviral activity of Apobec3G. The HIV-1 viral infectivity factor (Vif)
binds to Apobec3G leading to the degradation of Apobec3G
through a complex containing Cullin 5 and the proteins Elongin B
and Elongin C. Since Cullin 5 directly interacts with Vif and is critical
to the Apobec3G degradation pathway, the authors asked if genetic
variation of CUL5 could tip the balance between HIV-1 and
Apobec3G and modify the course of HIV-1 infection. They showed
that genetic variation in the CUL5 gene encoding Cullin 5 affected
the rate of CD4þ T cell loss in patients infected with HIV-1. CUL5
haplotypes formed two clusters of evolutionarily related haplotypes
with opposing effects—cluster I delayed and the cluster II
accelerated CD4þ T cell loss. The effect was mainly attributable to
a single haplotype or its tagging-SNP, which demonstrated differ-
ential binding of transcription factors. This finding highlights the
epidemiologic importance of the HIV-1 and Cullin 5 interaction and
suggests that the factors in the HIV-1 Vif-Apobec3G degradation
pathway may be targets for antiviral drugs.



Figure 1. Gene Map, SNPs, and Haplotypes in the Human CUL5 Gene

Coding exons are marked by black blocks, and 59 and 39 UTR by white blocks. Nucleotide changes and frequencies of SNPs and haplotypes (Hap) in AA,
EA, and HC are presented. ctSNPs are shown in color.
doi:10.1371/journal.pgen.0030019.g001

Figure 2. LD of CUL5 SNPs in AA and EA

LD of CUL5 SNPs is shown in AA (A) and EA (B). Pairwise D9 plots were generated using Haploview with its standard color scheme. Dark-red squares
indicate high D9 values, light-blue squares indicate high D9 values with low LOD scores, and light-red and white squares indicate low D9 values. D9
values were indicated for those not equal to 1.0. A single LD block was defined for both AA and EA under the default confidence interval criteria. A
reduced-medium network for the genealogical relationship of CUL5 haplotypes is shown in AA (C) and EA (D). The network was inferred in terms of
mutational distance, on the basis of 12 CUL5 SNPs and one chimpanzee (Chimp) sequence. Median vector (mv1), the consensus sequences inferred by
parsimony criteria, represents possible unsampled sequences or extinct ancestral sequences. Haplotypes (H1–H11) are represented by circles, whose
area reflects the number of alleles observed in each population. The solid branches between haplotypes represent mutational events or SNPs (S1–S12).
The circles in green show haplotypes with detrimental effect and those in blue show protective effect on AIDS progression in the Cox model analysis;
the protective effect of H3 in light blue was of less certainty (see Results). The haplotypes were separated into two clusters, cluster I and II, carrying
ctSNP5 A or G, respectively. Cluster I and II in AA are shaded in blue and green, respectively. SNP2 is omitted in (B) and (D) as it was absent in EA.
doi:10.1371/journal.pgen.0030019.g002
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tested, we took advantage of the unique haplotype relation-
ship in CUL5 revealed in the haplotype network. We first
tested the hypothesis that the two major clusters of haplotypes
were differentially associated with disease progression in AA
and EA. Cluster II identified by the ctSNP 5 G allele was
significantly associated with accelerated rates of progression
to CD4þ , 200 in both the unadjusted analysis and after
adjusting (adj) for the confounding effects of HLA B57 and
HLA homozygosity in the Cox proportional hazards model in
AA (Table 1). When an additive genetic effect was tested in the
Cox model analysis, the G allele significantly influenced the
risk of dropping to CD4þ, 200 (relative hazards [RH]adj¼1.47
and p ¼ 0.009). No significant associations were found for
AIDS-1987 (Table 1). Kaplan-Meier survival curves stratified
for the ctSNP5 A/A, A/G, and G/G genotypes suggested an
additive effect of the G allele (and by inference cluster II
haplotypes) on progression to CD4þ, 200 (p¼0.003, log-rank)
(Figure 3A). These results suggest that cluster II haplotypes, all
of which carry ctSNP5 G, were associated with more rapid loss
of CD4þ T cells, and that this effect is dose-dependent:
individuals bearing one or two haplotypes from cluster II are
at greater risk relative to individuals bearing any two
haplotypes from cluster 1 (Figure 3A).

CUL5 Cluster I and II Contain Protective and Detrimental
Haplotypes, Respectively

We next examined the role of each haplotype to identify
specific high-risk haplotypes. The Cox model analysis
indicated that the haplotype-tagging (ht)SNP6 G allele
carried only on Hap10 ( f ’ 5%) was a strong risk factor
for CD4þ T cell depletion (RHadj ¼ 2.49 and p ¼ 0.00001, for
the additive model) (Figure 3B and Table 1). In a Kaplan-
Meier survival plot, the htSNP6 G allele was a risk factor for
CD4þ, 200: the three GG homozygous individuals developed
CD4þ , 200 within five years (and all died within six years),

and all A/G heterozgotes developed CD4þ , 200 within nine
years of seroconversion (p ¼ 0.0003, log-rank and p ¼ 0.008,
Wilcoxon) (Figure 3B).
Because Hap10 carries both the htSNP6 G allele and the

ctSNP5 G allele, we tested ctSNP5 adjusting for the effects of
htSNP6 within a Cox model. The ctSNP5 effect became
nonsignificant (RHadj ¼ 1.25 and p ¼ 0.170), suggesting that
most of the association of ctSNP5 G allele and other cluster II
haplotypes with CD4þ T cell loss was due to htSNP6. When
considering ctSNP5 as a confounding covariate, the associa-
tion remained robust for htSNP6 (RHadj ¼ 2.16 and p ¼
0.0009). However, not all of the ctSNP5 association with CD4þ

T cell decline could be attributed to htSNP6. This can be
readily observed in Figure 3C where individuals homozygous
for cluster I haplotypes (ctSNP5 A/A) are protective relative
to cluster II carriers, and the greatest risk is for carriers of the
cluster II Hap10 (p¼ 0.0002, log-rank). This suggests that one
or more ctSNP5 G-bearing haplotypes and the htSNP6 G-
bearing Hap10 may be tracking the same functional allele
elsewhere in the CUL5 gene.
Hap1 and Hap6 in cluster I also were associated with

delayed time to CD4þ, 200 (RH¼ 0.59, 0.41; p¼ 0.013, 0.02,
respectively) (Table 2 and Table S2). None of the SNPs or
haplotypes was significantly associated with progression to
the AIDS late-stage endpoint AIDS-87 (Table 1 and Table S2).

Relative Contribution of CUL5 Haplotypes on CD4þ T Cell

Depletion
To evaluate the relative contributions of the protective

Hap1 and Hap6 haplotypes and the accelerating Hap10 on
time to CD4þ , 200, the Akaike Information Criteria (AIC)
were used to select the best Cox proportional hazards model.
The covariates HLA homozygosity and HLA B57 were used in
the base mode (model 1). The smallest AIC was achieved for

Table 1. Effects of CUL5 SNPs on Progression to CD4þ T Cells , 200 and AIDS in African Americans

SNP Model Endpoint Genotype n RH 95% CI p qa RH 95% CI p q

Unadjusted Adjustedb

ctSNP5c Reference AA 108 1 — — — 1 — — —

Heterzygotes CD4 , 200 AG 141 1.35 0.86, 2.11 0.20 — 1.27 0.80, 2.01 0.31 —

Homozygotes CD4 , 200 GG 41 2.52 1.42, 4.46 0.002 0.012 2.34 1.28, 4.27 0.006 0.025

Additive CD4 , 200 GG . AG . AA 290 1.56 1.17, 2.07 0.002 0.013 1.47 1.10, 1.96 0.009 0.026

Additive,

adjusted SNP6d

CD4 , 200 GG . AG . AA 290 1.37 1.01, 1.87 0.04 0.068 1.25 0.91, 1.71 0.17 0.195

Additive AIDS-93 GG . AG . AA 291 1.36 1.05, 1.76 0.02 0.043 1.33 1.04, 1.71 0.026 0.050

Additive AIDS-87 GG . AG . AA 293 1.10 0.77, 1.58 0.6 — 1.07 0.75, 1.51 0.71 —

htSNP6 Reference AA 260 1 — — — 1 — — —

Heterzygotes CD4 , 200 AG 27 2.34 1.36, 4.01 0.002 0.013 2.7 1.56, 4.67 0.0004 0.007

Homozygotes CD4 , 200 GG 3 4.70 1.45, 15.21 0.010 0.026 4.9 1.51, 15.93 0.008 0.026

Additive CD4 , 200 GG . AG . AA 290 2.29 1.52, 3.44 0.00008 0.003 2.49 1.65, 3.75 0.00001 0.001

Additive,

adjusted SNP5e

CD4 , 200 GG . AG . AA 290 1.89 1.21, 2.94 0.005 0.025 2.16 1.37, 3.40 0.0009 0.008

Additive AIDS-93 GG . AG . AA 291 2.06 1.32, 3.20 0.001 0.008 2.11 1.40, 3.19 0.0004 0.007

Additive AIDS-87 GG . AG . AA 293 0.99 0.44, 2.22 0.98 — 1.27 0.63, 2.56 0.51 —

aThe q-value (q) measures the FDR and was presented for those with p , 0.05.
bAdjusted for HLA homozygosites and B57.
cSNP5 is a proxy for SNP3 and SNP8 and also for the haplotype cluster (ct).
dAdditionally adjusted for SNP6.
eAdditionally adjusted for SNP5.
CI, confidence interval; RH, relative hazards
doi:10.1371/journal.pgen.0030019.t001
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model 5 where all three haplotypes were added in model 5
(Table S3).

Role of CUL5 SNPs and Haplotypes on AIDS-Free Survival

in European Americans
The six haplotypes in EA also form two clusters (Figure 2D).

In the Cox model analysis, ctSNP5 showed no significant
associations (Table S4), although weak associations were
observed for two haplotypes and three SNPs. The cluster I

haplotype Hap3 had an additive protective effect on rate of
progression to CD4þ , 200 and AIDS 1993 (RH ¼ 0.71–0.68
per allele, p ¼ 0.026–0.006, respectively), and the cluster I
Hap7 had a slight accelerating effect (CD4þ, 200, RH¼ 1.25,
p¼ 0.056; AIDS-93, RH¼ 1.31, p¼ 0.010, respectively) (Table
S2). Small effects were also observed for SNP4 (protective for
AIDS-93, RH ¼ 0.78, p ¼ 0.03), SNP7 (risk for AIDS-93, RH ¼
1.24, p ¼ 0.02), and SNP12 (risk for AIDS-93, RH ¼ 1.2, p ¼
0.02) (Table S4).

Effect of CUL5 SNPs and Haplotypes on Longitudinal CD4þ

T Cell Counts and HIV-1 RNA Levels in African Americans
from the AIDS Link to the Intravenous Experience Cohort
CD4þ T cell counts and HIV-1 RNA levels were measured

multiple times during the follow-up period for the AIDS Link
to the Intravenous Experience (ALIVE) SC participants. An
average of 7.8 and 6.8 measurements of CD4þ T cell counts
and viral load, respectively, per patient for up to nine years
from the seroconversion to 1997-censoring date were
available for analysis. We evaluated the effects of ctSNP5
(representing all cluster II haplotypes) and htSNP6 (Hap10)
on the longitudinal slope of CD4þ T cell count and HIV-1
RNA level over the clinical course using the linear mixed
random effects model.
The ctSNP5 G allele tends to be associated with gradient

differences for CD4þ T cell slopes stratified by genotype
(Figure 4 and Table 3): each copy of the ctSNP5 G allele was
associated with�0.99 (p ¼0.05) or�1.23 (p ¼ 0.01) lower mean
CD4þ T cell trajectory, over the observation periods from
seroconversion to July 31, 1997 (date censored before highly
active antiretroviral therapy [HAART]) or to July 31, 2004,
respectively (Table 3). The htSNP6 G allele on Hap10 was
strongly associated with a more rapid mean loss of CD4þ T
cells: each copy of the ctSNP6 G allele was associated with
�2.56 (p ¼ 0.01) or �2.63 (p ¼ 0.01) lower mean CD4þ T cell
trajectory, for the observation periods from seroconversion
to July 31, 1997 or to July 31, 2004, respectively (Table 3).
For HIV-1 RNA level, a modest increase in HIV-1 RNA

levels was observed for ctSNP5 under an additive model
(þ0.18, p ¼ 0.04). No effect was detected for SNP6, possibly
due to the low frequency of the minor allele and smaller
number of HIV-1 RNA measurements available (Table 3).

Figure 3. Kaplan-Meier Survival Analysis of CUL5 Variants on Progression

from Seroconversion to CD4þ T cells , 200 /mm3 in AA

(A) Shows ctSNP5 (the cluster); (B) shows htSNP6 (Hap10); and (C) shows
compound genotypes of ctSNP5 and htSNP6.
doi:10.1371/journal.pgen.0030019.g003

Table 2. Effects of Selected CUL5 Haplotypes on AIDS
Progression in AA by Cox Model Analysis

Haplotype Endpoint n/Events RH 95% CI p q

Hap1 CD4 , 200 239/88 0.59 0.39, 0.90 0.013 0.031

Hap1 AIDS-87 242/49 0.56 0.31, 1.01 0.054

Hap6 CD4 , 200 239/88 0.47 0.23, 0.97 0.042 0.068

Hap6 AIDS-87 242/49 1.08 0.51, 2.31 0.832

Hap7 CD4 , 200 239/88 1.28 0.61, 2.69 0.507

Hap7 AIDS-87 242/49 2.66 1.26, 5.63 0.010 0.026

Hap10 CD4 , 200 239/88 2.57 1.49, 4.41 0.001 0.007

Hap10 AIDS-87 242/49 1.54 0.66, 3.59 0.319

The results of Cox Model Analysis were from the additive model. Results shown were
unadjusted and those with adjustment were similar. Events are for the number of
individuals who experienced the endpoint.
CI, confidence interval; n, number of individuals; p, p-values; q, q-values (measures for the
FDR); RH, relative hazards
doi:10.1371/journal.pgen.0030019.t002
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Interactions between APOBEC3G-H186R and CUL5 SNPs
Because Cullin 5 affects Apobec3G’s anti-HIV-1 activity, we

reasoned that the CUL5 cluster II haplotypes may interact
with the APOBEC3G-186R allele, previously reported by us to
be associated with accelerated CD4þ T cell depletion [18].
Using the group of individuals homozygous for both
APOBEC3G-186H and cluster I haplotypes as a reference
group, we tested the effects of different combinations of
alleles on the mean CD4þ T cell trajectories using the mixed
effects model (Table 3). We observed a significant additive
interaction between APOBEC3G-186R carriers and ctSNP5 G
or htSNP6 G carriers (�2.88, p ¼ 0.01 and �3.64, p ¼ 0.02,
respectively), in the data censored in July 31, 1997. A stronger
association (�3.11, p¼ 0.005 and�4.16, p¼ 0.007, respectively)
was obtained using the extended followed-up time to July 31,
2004 (Table 3).

Estimate of the False Discovery Rates
To account for the multiple comparisons made in this

study, we estimated the q-value statistic to estimate the false
discovery rate (FDR). The FDR was calculated incorporating
all p-values from 122 tests performed for SNPs and
haplotypes in the Cox model and mixed effects model. The
q-value was obtained for each and all of the p-values, and the
q-values for those with p � 0.05 were presented. The
associations for ctSNP5, htSNP6 with CD4þ , 200, and
CD4þ T cell slope in AA as well as Hap1, Hap7 in AA, and
Hap3 in EA had q-values below the stringent cutoff of 0.05
indicating a FDR of 5% for a given p-value (Tables 1–3 and
Tables S2–S4).

Electrophoretic Mobility-Shift Assay
To explore the possibility that the SNP6 may differentially

bind to nuclear proteins, probes containing the SNP6 A allele
or the G allele were incubated with the nuclear extracts from
human T lymphocytes stimulated with interleukin (IL)-4 in an
electrophoretic mobility-shift assay (EMSA). A 1.85-fold or
1.75-fold increase in the band density was observed for the

SNP6 G allele in comparison with the common A allele from
two independent experiments, although no pattern changes
were observed (Figure 5). A similar but weaker result was
obtained in the IL-2 stimulated T cells (unpublished data).
This suggests that the SNP6 G allele has higher binding
affinity with unknown nuclear proteins.

Discussion

The ability of Apobec3G to restrict HIV-1 replication
through hypermutation is suppressed by HIV-1 Vif binding to
CUL5 gene product Cullin 5, leading to the polyubiquitina-
tion and degradation of Apobec3G and Apobec3F through
the Cullin 5-Elongin B-Elongin C E3 ubiquitin ligase pathway
[7,14,21]. To understand the role of genetic variation in the
gene encoding Cullin 5 on HIV-1/AIDS, we examined 12 SNPs
and their haplotypes on risk and progression of HIV-1
disease. The haplotypes formed two clusters defined by alleles
at the proxy SNPs 3, 5, and 8. Relative to cluster I, cluster II
haplotypes as a group were associated with faster CD4þ T cell
decline as indicated by the Cox model analysis of survival to
the endpoint of CD4þ , 200 and reaffirmed by the mixed
effects model assessing CD4þ T cell trajectory over time.
Individuals who were carriers of any two cluster II haplotypes
progressed to CD4þ , 200 about 5.7 years faster than those
who carried any two cluster I haplotypes. The effect of cluster
II was largely attributable to Hap10, carrying both ctSNP5 G
and htSNP6 G alleles. On the other hand, cluster I contains
the two protective haplotypes, Hap1 and Hap6, which delayed
CD4þ T cell loss. We also observed an additive interaction
between CUL5 cluster II haplotypes and APOBEC3G-H186R
on CD4þ T cell slope, suggesting that Apobec3G and Cullin 5
likely confer independent effects on CD4þ T cell loss [18].
The genetic effects derived from multiple SNPs and

haplotypes, and from the haplotype clusters, provide evi-
dence that genetic variation in CUL5 likely modifies the rate
of disease progression of HIV-1 with the effects being
stronger and more consistent among AA than EA. The
differences observed between the two racial groups suggest
that there are additional functional alleles in LD with the SNP
markers assessed in this study.
To assess the possibility that the observed associations were

due to the multiple tests, we estimated the FDR for all the
tests performed. Although this test is quite conservative as
there is considerable correlation among SNPs, haplotypes,
and disease endpoints, the FDR for significant (p , 0.05) SNP
and haplotype associations in both AA and EA was 5% or less.
However, the gold standard for validation of genetic
associations remains confirmation in other adequately
powered studies.
Human Cullin 5 is a highly conserved 780-amino acid

protein, differing by only seven amino acids from the rabbit
VACM-1 protein [22,23]. The conservation of Cullin 5 amino
acid sequence suggests that the Cullin 5 protein is under
strong functional constraint and purifying selection. The fact
that genetic effects observed for SNP5 and SNP6 were most
robust under the additive genetic model suggests a dose-
effect of the factors. It is thus most likely that the causal
sequence or alleles lie in regulatory elements affecting CUL5
mRNA or protein levels. However, no promoter or non-
synonymous SNPs were reported among over 230 SNPs in the
CUL5 gene deposited in the dbSNP database as of July 6, 2006

Figure 4. Arithmetic Mean of CD4þ T Cell Counts over Time in the ALIVE

Cohort by ctSNP5 (the Cluster)

The observation period was from seroconversion to the censoring date
of July 31, 1997. CD4þ T cell counts were measured at 6-month intervals
and were square-root transformed with standard error represented by
the vertical bar.
doi:10.1371/journal.pgen.0030019.g004
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and none were discovered when resequencing putative
promoter and exonic regions in 188 individuals for this study.

In an in vitro electromobility gel shift assay, the DNA
fragment carrying the G allele of SNP6, compared to the
more common A allele, was found to show an increased
binding affinity to nuclear proteins from human T lympho-
cytes. This suggests that SNP6 is a functional SNP that may
affect the gene regulation or interaction. A higher level of
Cullin 5 due to a potential up-regulation of CUL5 gene would
enhance the Cullin 5-Vif interaction, leading to stronger
inhibition of antiviral protein Apobec3G and, hence, in-
creased HIV-1 infectivity. In addition, a real-time PCR was
performed to measure the mRNA expression levels of CUL5
from EBV-transformed B cell lines in three, three, and six
normal individuals carrying CUL5 SNP5 genotypes AA, GG,
and AG, respectively. No difference greater than 2-fold
(minimal detection threshold) was detected between geno-
types (unpublished data), though a more subtle difference
could not be excluded. Little is known about CUL5 regulation
in different cell types or within CD4þT cells infected by HIV-
1. It is possible that SNPs in CUL5 influence HIV-1 disease by
alternative splicing, by affecting mRNA stability, or by
unknown protein structural change, in addition to altered
gene expression. The underlying mechanisms of CUL5
genetic variation on HIV-1 warrant further investigation.

This study provides evidence that CUL5 gene variation is
associated with modified rates of CD4þ T cell loss. If
confirmed, these findings demonstrate the epidemiologic
importance of the interaction between HIV-1 Vif and human
Cullin 5. The antiviral activity of both Apobec3G and
Apobec3F have been shown to have antiviral activity that is
fully suppressed by HIV-1 Vif through the Cullin 5 containing
E3 ubiquitin ligase [7,14]. Depletion of Cullin 5 through RNA
interference or overexpression of Cullin 5 mutants blocks the
ability of HIV-1 Vif to suppress both Apobec3G and
Apobec3F [14]. It is therefore possible that regulation of
expression levels of CUL5 genetic variants may affect the
efficiency of Vif-mediated degradation of Apobec3F and

Apobec3G. These in vitro studies, together with our findings
that CUL5 genetic factors modify the rate of CD4þ T cell loss,
provide support for the development of inhibitors that block
HIV-1 Vif and Cullin 5-Elongin B-Elongin C E3 ligase
complex binding, aiming to limit or prevent degradation of
these potent antiviral host factors.

Materials and Methods

Study participants. Study participants were enrolled in five United
States-based natural history HIV/AIDS cohorts. ALIVE is a commun-
ity-based cohort of intravenous injection drug users in Baltimore
enrolled in 1988–1989 [24], consisting of 92% AA. Multicenter AIDS
Cohort Study (MACS) is a longitudinal prospective cohort of men
who have sex with men from four U.S. cities: Chicago, Baltimore,
Pittsburgh, and Los Angeles enrolled in 1984–1985 [25], consisting of
83% EA and 10% AA. The San Francisco City Clinic Study (SFCC) is a
cohort of men who have sex with men originally enrolled in a
hepatitis B study in 1978–1980 [26], consisting of 96% EA.
Hemophilia Growth and Development Study (HGDS) is a multicenter
prospective study that enrolled children with hemophilia who were
exposed to HIV-1 through blood products between 1982 and 1983
[27], consisting of 72% EA and 11% AA. The Multicenter Hemophilia
Cohort Study (MHCS) is a prospective study that enrolled persons
with hemophilia [28], consisting of 90% EA and 6% AA. The
individuals genotyped in this report consisted of HIV-1 SC,
seroprevalents, SN, and high-risk exposed uninfected (HREU) for a
total of 3,476 participants (2,169 EA and 1,307 AA). The numbers of
EA and AA individuals studied in each disease category were as
follows: SC¼659, 290; SN¼309, 336; HREU¼141, 82; respectively. Of
290 AA SC, 237, 42, five, and five were from ALIVE, MACS, MHCS,
and HGDS, respectively.

The date of seroconversion after study enrollment was estimated as
the midpoint between the last seronegative and first seropositive
HIV-1 antibody test; only individuals with less than two years’ elapsed
time between the two tests were included in the seroconverter
progression analysis. The censoring date was the earliest of the date
of the last recorded visit, or December 31, 1995 for the MACS, MHCS,
HGDS, and SFCC, or July 31, 1997 for the ALIVE cohort, to avoid
potential confounding by HAART. The censoring date was extended
in the ALIVE cohort because of delayed administration of HAART to
this group [24,29]. The MACS, MHCS, SFCC, and ALIVE consists of
both SC (infected after study enrollment) and seroprevalents
(infected before study enrollment) individuals: because of the
potential for frailty bias (missing the most rapid progressors to AIDS
and death) among seroprevalents, only SC enrolled in the ALIVE,
MACS, MHCS, and SFCC were used in the analysis. In addition, DNA
samples from 110 normal blood donor HC were included to provide
an estimate of allele frequencies in a major Asian population and to
inform for future CUL5 genetic studies in this population. This group
was not used in the association analyses.

The study was approved by the Institutional Review Boards of
participating institutes, and informed consent was obtained from the
participants.

Identification of SNPs. A panel consisting of 94 DNA samples each
from EA and AA was partially resequenced to discover novel CUL5
polymorphisms. PCR primers were designed based on GenBank DNA
sequence AP003307 and mRNA sequence NM_003478 to cover the
putative promoter region, 59 UTR, exons 15–19 encoding the C
terminus that was shown to confer major function [7], and 39 UTR of
the CUL5 gene. SNPs were obtained from dbSNP, HapMap (http://
www.hapmap.org), and TaqMan SNP Genotyping Assay databases
(http://myscience.appliedbiosystems.com). A total of 12 SNPs were
selected for genotyping by considering SNP location, spacing, and at
least 5% allele frequency (Figure 1A and 1B). Haplotype-tagging
(ht)SNPs were given preference in the SNP selection.

Genotyping of SNPs. Genotyping was performed using TaqMan
assays according to the manufacturer’s manual (Applied Biosystems,
http://www.appliedbiosystems.com). TaqMan primer and probes were
designed by using the Primer Express software or by the Assay-by-
Demand service of Applied Biosystems (Table S1). A total of eight
water controls were included on each plate to monitor the potential
PCR contamination, and 10% of SC and HREU samples were
genotyped twice. The genotypes obtained were free of water
contamination or of inconsistencies between duplicates. SNP5 was
genotyped twice using two different sets of primers and probes, and
the results were identical.

Figure 5. EMSA Analysis of CUL5 SNP6 A/G

Nuclear extracts from human T lymphocytes induced by IL-4 were bound
to the oligonucleotide containing the SNP6 A allele (lane A) or G allele
(lane B), without cold competitors. Lane C contained nuclear extracts,
SNP6 A allele probe, and a 100-fold excess of its cold probe as
competitor. Lane D contained nuclear extracts, SNP6 G allele probe, and
a 100-fold excess of its cold probe as competitor. An arrow indicates the
band showing differential binding of nuclear factor(s) to the oligonu-
cleotides.
doi:10.1371/journal.pgen.0030019.g005
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Statistical analysis. Analyses were conducted using the statistical
packages SAS version 9.0 (SAS Institute, http://www.sas.com). Con-
formity to the genotype frequencies expected under Hardy-Weinberg
equilibrium was examined for each SNP. The genetic effects of SNPs
on HIV-1 infection susceptibility were assessed by comparing allelic
frequencies between HIV-1 HREU and HIV-1 SC participants using
the Fisher’s exact test. Kaplan-Meier survival statistics and the Cox
proportional hazards model were used to assess the effects of SNPs
and haplotypes on the rate of progression to AIDS. We considered
three separate endpoints reflecting advancing AIDS pathogenesis for
SC: (1) HIV-1 infection plus a decline of CD4þ T cell counts , 200
cells/mm3 (CD4þ, 200); (2) the 1993 Centers for Disease Control and
Prevention (CDC) definition of AIDS (AIDS-93): HIV-1 infection plus
a CD4þ T cell count of ,200/mm3 or AIDS-defining conditions [30];
(3) the 1987 CDC definition of AIDS (AIDS-87): HIV-1 infection plus
AIDS-defining illness [31]. The significance of genotypic associations
and RH was determined by unadjusted and adjusted Cox model
regression analyses. For each SNP, we compared the minor allele
genotypes to the most common genotype as a reference group. To
determine if there was an additive effect of SNPs or alleles, the
additive genetic model was tested by comparing survival in persons
carrying two to one minor alleles to the homozygous reference group,
coded as 2, 1, and 0, respectively, in the regression analysis: RH
reflects effects of each copy of the allele or the haplotype. All p-values
were 2-tailed. Genetic factors previously shown to affect progression
to AIDS in EA and AA groups were included as confounding
covariates in the adjusted Cox model analysis: CCR5 D32 [32]; CCR2-
64I [33]; CCR5-P1 [34]; HLA-B*27 [35]; HLA-B*57 [35]; HLA-B*35Px
group (including HLA-B*3502, B*3503, B*3504, and B*5301) [36];
and HLA class I homozygosity [37] for EA; HLA-B*57 and HLA class I
homozygosity for AA. CCR2-64I, HLA-B*27, and HLA-B*35Px were
not considered as covariates in AA due to absent or weak effects in
our AA participants, and CCR5 D32 was not considered due to its
rarity in AA. Participants were stratified by sex and by age at
seroconversion: 0–20, .20–40, and .40 years [38].

To evaluate which haplotype or combination of haplotypes
predicted survival, the AIC generated in the Cox model was used as
the model selection criterion [39]. Among models tested, the one with
the smallest value of AIC was considered to be the best model.

To account for the multiple comparison tests performed in our
analysis, we estimated the q-value measuring FDR, which is defined as
the proportion of statistical tests called significant that are actually
false-positive (http://faculty.washington.edu/jstorey/qvalue)[40]. The
approach of computing q-values, also known as FDR adjusted p-
values, was considered more powerful than the Bonferroni procedure
when there is high degree of LD among the markers [41]. FDR is a
recommended procedure to correct for multiple comparisons in
genetic association studies [42].

CUL5 genotype, HIV-1 RNA, and CD4þ T cells. The repeated
measurements of HIV-1 RNA levels and CD4þT cell counts over time
were modeled using the random effects linear models from HIV-1
SCs enrolled in the ALIVE study, adjusted for sex and age [18]. This
model provides estimates of mean CD4þ T cell measurements over
time while accounting for the correlation of repeated measurements
within each individual. In all models absolute CD4þT cell counts were
square-root transformed, and plasma HIV-1RNA levels were log10
transformed to better comply with model assumptions. A likelihood
ratio test was used as a test of significance. Two observation periods
were used: (1) from seroconversion to the censoring date of July 31,
1997, before any impact of HAART was observed in the ALIVE
cohort [24]; and (2) to increase the number of observations, from
seroconversion to July 31, 2004, the last date for which CD4þ T cell
and HIV-1 RNA levels were available for analysis.

LD and haplotype structure. Pairwise LD was quantified using the
absolute value of Lewontin’s D9 [43]. Absolute values of D9 range from
0 for independence to 1 for complete LD between the pairs of loci.
LD plots were generated utilizing Haploview version 3.11 (https://
www.broad.mit.edu/mpg/haploview) [44]. A triangular matrix of D9
value was used to demonstrate LD patterns within AA and EA.
Haplotype blocks were defined with a default algorithm based on
confidence intervals of D9 [19]. Haplotypes were inferred by the
expectation maximization algorithm [45].

To depict the relationships among inferred haplotypes and
evolutionary history of the genetic variants at the CUL5 locus, a

minimum mutation phylogenetic network was constructed by using
NETWORK package, based on the Reduced Median (RM) network
method (http://fluxus-technology.com/sharenet.htm) [20]. A chimpan-
zee sequence was included as an out-group and was aligned to the
paralogous human sequence to infer the derived or ancestral state for
each human SNP.

EMSA. Cell culture and EMSA were performed as described
[46,47]. Freshly explanted human T lymphocytes were obtained from
normal donors, purified by isocentrifugation, and activated for 72 h
with 1 mg/ml phytohemaglutinin (PHA) in RPMI 1,640 medium
containing 10% fetal calf serum (FCS) (Sigma, http://www.sigmaal-
drich.com), 2 mM L-glutamine, and penicillin-streptomycin (50 IU/ml
and 50 mg/ml, respectively). T lymphocytes were made quiescent by
washing and incubating for 24 h in RPMI 1,640 medium containing
1% FCS before exposure to cytokines. Cells were then stimulated
with 100 nmol/l IL-4 (PeproTech, http://www.peprotech.com) or 100
nmol/l human rIL-2 (Hoffmann-La Roche, http://www.rocheusa.com)
at 37 8C for 10 min. Cell pellets were frozen at �70 8C. The probe
sequences were 59-CAGTTGAACATaCCTTGTTAGGA-39 for SNP6 A
allele and 59-CAGTTGAACATgCCTTGTTAGGA-39 for SNP6 G
allele. In cold oligonucleotide competition assay, 100-fold excess of
unlabeled probe was added as a competitor. The band density was
measured by the software ImageJ (http://rsb.info.nih.gov/ij/index.
html).

Supporting Information

Table S1. Genotyping Methods for CUL5 SNPs

Found at doi:10.1371/journal.pgen.0030019.st001 (18 KB XLS).

Table S2. Cox Model Analysis of CUL5 Haplotypes

Found at doi:10.1371/journal.pgen.0030019.st002 (22 KB XLS).

Table S3. Selection of the Top Models for CUL5 Haplotypes Using
AIC

Found at doi:10.1371/journal.pgen.0030019.st003 (15 KB XLS).

Table S4. Cox Model Analysis of CUL5 SNPs in EA

Found at doi:10.1371/journal.pgen.0030019.st004 (17 KB XLS).

Accession Numbers

The Entrez Gene databank (http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?db¼gene) accession numbers for the genes discussed in this paper
are Cullin 5 (8065), Elongin B (6923), Elongin C (6921), Rbx1 (9978),
Apobec3G (60489), Apobec3F (200316), and HIV-1 Vif (155459).

The GenBank (http://www.ncbi.nlm.nih.gov) accession number for
chimpanzee CUL5 sequence is NW_113990.
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