Agenda

1:00-1:10 pm Eric Freed (HIV Dynamics and Replication Program, National Cancer Institute)
Welcoming remarks

1:10-1:50 pm Dan Barouch (Beth Israel Deaconess Medical Center and Ragon Institute of MGH, MIT, and Harvard)
Broadly neutralizing antibodies for HIV eradication strategies

1:50-2:30 pm Robert Siliciano (Johns Hopkins University School of Medicine and Howard Hughes Medical Institute)
Monitoring progress towards HIV cure

2:30-3:10 pm James Whitney (Beth Israel Deaconess Medical Center and Ragon Institute of MGH, MIT, and Harvard)
TLR7 therapy induces transient viremia in 5/V-infected ART-suppressed monkeys

3:10-3:40 pm Break

3:40-4:20 pm Alex Marson (University of California, San Francisco)
Genome engineering HIV-interacting host factors in primary T cells

4:20-5:00 pm Michael Farzan (The Scripps Research Institute)
eCD4-Ig provides robust protection from SHIV-AD8

5:00-5:40 pm Ed Berger (Laboratory of Viral Diseases, NIAID, NIH)
Targeted cell killing to achieve a (functional) HIV cure: Different strategies for acute versus chronic infection

5:40-5:45 pm Stephen Hughes (HIV Dynamics and Replication Program, National Cancer Institute)
Closing remarks

Sponsored by the HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute

Credits: The photograph of “Berlin Patient” Timothy Ray Brown by Peter Rigaud was provided by defeatHIV.org. The model image (provided by Michael Farzan) shows an anti-HIV compound that was developed by a novel gene therapy approach. Farzan’s team at The Scripps Research Institute and colleagues at more than a dozen other research institutes constructed this compound (named eCD4-Ig) with an engineered form of the CD4 host receptor (red) and a mimic of the CCR5 host receptor (green), connected by a conserved piece of an antibody (gray). As HIV-1 (beige) binds simultaneously and tightly to the CD4 and CCR5 receptor sites on the compound, the virus changes shape and is thus locked out of binding to the host cell. Initial studies have shown that eCD4-Ig is potent and broadly neutralizing, blocking the virus more effectively than any currently available antibody therapy against HIV-1.